

Earth Observation Telescope at L2 Final Report

Communications

Frederic Stillwagen NASA Langley Research Center 5 December 2003

Earth-Sun L2 Gossamer Telescope

"Earth-Sun L2 Gossamer Telescope" Communications Architecture

ELEMENTS:

Aperture Spacecraft Communications

Science S/C Communications

Earth L4/L5 relay

Ground Stations@ Svalbard, Norway McMurdo, Antarctic

Communications Overview

- Baseline option for Communications: Primarily for Science Spacecraft
 - (A) S-band Uplink / X-band downlink
 - S-Band transmit to S/C from Earth via Earth L4/L5 relay; X-Band science telemetry transmit to Earth stations at McMurdo, Antarctic *and* Svalbard, Norway
 - Issues: (1) Data rate limited to 110 Mbps (*QPSK*) for X-band downlink
 - (2) Coverage per site varies on seasonal variation of Earth w.r.t E-S L2
 - (3) Placement of Relay Spacecraft at Earth L4 or L5 points for command uplink; can be alternately used for low rate telemetry off-loading and connection to DSN
 - UHF Crosslink to Aperture Spacecraft for command and position data transfers
- Baseline option for Communications: Aperture Spacecraft
 - (A) S-band Uplink & Downlink
 - S-Band transmit to S/C from Earth L4/L5 relay
 - (B) UHF Crosslink to science spacecraft
 - Crosslink for position and spacecraft Health and Status

Communications Overview Primary Science Spacecraft

- Baseline Comm Approach
 - -1 meter inflatable antenna (.53kg/m²), including feed; add gimbal
 - X-Band telemetry transceiver (QPSK modulation, operating at ~100 MBPS)
 - 100 Watt X-band RF Power Amplifier, $\sim 50\%$ efficiency) = 200Watts of Power
 - S-Band transceiver for commands and health/status telemetry
 - 3 watt RF output --> requires about 15 watts
 - S-band patch dipole antenna (two) for coverage
 - UHF transponder for crosslink communications with secondary Aperture spacecraft
 - 110-200 Milliwatt transmit power
 - Total of ~ 15 Watts of power
 - Quadrafilar Helix antenna
 - Telemetry ground stations at SvalBard, Norway and McMurdo, Antarctica
 - X-Band Antennas (11.3 m and 10m respectively, dual X,S capability)
 - Command transmission to Spacecraft directly (during transit) and via Earth L4/L5 relay(s) during operations.
 - X-band QPSK reception @ 50 Msps; effective data rate of 100 Mbps 5

Communications Overview Primary Science Spacecraft

Science Spacecraft Communications

- Fully redundant (two strings shown)
- Inflatable Antenna technology
- Microwave Patch antenna technology
- Advanced Transceiver and Transponder technology
- Advanced modulation and coding

Communications Overview Secondary Aperture Spacecraft

- Baseline Comm Approach
 - S-Band transceiver for commands and health/status telemetry
 - 3 watt RF output --> requires about 15 watts
 - S-band patch dipole antenna (two) for coverage
 - UHF transponder for crosslink communications with primary science spacecraft
 - Milliwatt transmit power
 - Total of ~ 15 Watts of power
 - Quadrafilar Helix antenna
 - Ground Stations at SvalBard, Norway and McMurdo, Antarctica
 - S-Band Antennas (11.3 m and 10m respectively) for commanding
 - Transmission to Spacecraft directly (during transit) and via Earth L4/L5 relay during operations (if necessary).

Communications Overview Secondary Aperture Spacecraft

Aperture Spacecraft Communications

- Scaled down from science spacecraft reusing major components
- Fully redundant (two strings shown) Sband
- Microwave Patch antenna technology
- Advanced Transceiver technology
- Advanced Helical Antenna technology
- Advanced modulation and coding

System Design Drivers

- Available Power for Communications System on the Science spacecraft
- Available coverage time allowed for Ground Station usage (Svalbard & McMurdo)
- Technology achievement and usage of inflatable antennas (3 meter dia. For example)
- True throughput daily data allocation
- Navigation and pointing accuracy of co-located spacecraft at L2

Science Spacecraft Communications

• Mass and power can be reduced in the future

System	Quan-tity	Total Mass CBE (kg)	Average Power CBE (W)	Peak Power CBE (W)	Comments	
Power Amplifier	2	6	65	200	100 Watt Tx Power	
X-Band telemetry transceiver	2	6	12	18		
1 meter inflatable antenna and						
gimbal	1	2	0	0	(.53kg/m ²), including feed)	
S-Band transceiver	2	6	6	15	for commands and health/status telemetry	
S-band patch dipole antenna	2	1	0	0	For full coverage on uplink	
UHF transponder	2	6	6	15	for crosslink communications with aperture spacecraft	
Misc. Cables,					To allow redundant crossover communications	
switches,components	1	10	0	0	capability (S-band, UHF and X-Band)	
Quadrafilar UHF Helix antenna	1	8	0	0		
Totals		44	89	248		

System	Quan-tity	Total Mass CBE (kg)	Average Power CBE (W)	Peak Power CBE (W)	Future readiness	
Power Amplifier	2	3	40	125	2025	
X-Band telemetry transceiver	2	3	6	9	2025	
1 meter inflatable antenna and						_
gimbal	1	2	0	0	2020	Future
S-Band transceiver	2	3	3	7.5		
S-band patch dipole antenna	2	1	0	0	2012	
UHF transponder	2	3	3	7.5		
Misc. Cables,						
switches,components	1	5	0	0.0	2012	
Quadrafilar UHF Helix antenna	1	6	0	0	2020	12
Totals		26	52	149		

CBE

Aperture Spacecraft Communications

• Mass and power can be reduced in the future

System	Quan-tity	Total Mass CBE (kg)	Average Power CBE (W)	Peak Power CBE (W)	Comments
S-Band transceiver	2	6	6	15	for commands and health/status telemetry
S-band patch dipole antenna	2	1	0	0	For full coverage on uplink
UHF transponder	2	6	6	15	for crosslink communications with aperture spacecraft
Quadrafilar UHF Helix antenna	1	8	0	0	To allow redundant crossover communications capability (S-band, UHF and X-Band)
Misc. Cables,					
switches,components	1	10	0	0	
Totals		31	12	30	

System	Quan-tity	Total Mass CBE (kg)	Average Power CBE (W)	Peak Power CBE (W)	Future Readiness	
S-Band transceiver	2	3	3	7.5	2012	Eutura
S-band patch dipole antenna	2	1	0	0	2012	Future
UHF transponder	2	3	3	7.5	2012	
Quadrafilar UHF Helix antenna	1	5	0	0	2012	
Misc. Cables,						
switches,components	1	10	0	0		
Totals		22	6	15		13

CBE

Coverage Analysis (DTE)

S/C Tx Power versus data rate Performance estimates

 $2.9 \text{ x}10^{12} \text{ bits per day} = 100 \text{ Mbps} @ 485 \text{ minutes/day}$

*Approximately 8.1 hours per day, scheduled between two ground stations

OR 40 Mbps @ 1215 minutes/day (~ 24/7)

BASELINE Telemetry

Science telemetry performance analysis

Daily baseline science data:

 $\sim 2.9 \text{ x}10^{12}$ bits per day ; includes compression, Reed-Solomon, and telemetry format coding

Baseline Science Spacecraft telemetry communications:

- X-band (Earth Science) allocation for telemetry transmission
- 100 Watt Solid State RF Power Amplifier
- QPSK modulation @ 50 Msps = effective data rate (I+Q) of 100Mbps
- \geq 3 dB link margin; .81 Eb/No; Mod Index 1.1; R-S FEC; BER 10⁻⁶
- Downlink opportunities at Svalbard, Norway & McMurdo, Antarctica
- Use of 1 meter (dia.) Inflatable antenna technology on S/C
- Requires ~ 8.1 hours per day to ground station telemetry receivers

Ground Stations: Svalbard, Norway (11.3m antenna) & McMurdo, Antarctica (10m antenna)

- Seasonal variation gives up to 16 hours of daily ground station(s) coverage time
- Missed ground station contacts can be accommodated by increase in time on successive days

Future System Trades

- Ground Station usage versus "reality" to use GEO Relay Spacecraft
- Optical communications capability & S/C impacts versus RF
- Necessity of Earth L4 or L5 Relay for command uplink
 - What are the absolute issues of very small E-(S/C)-S angles for transmissions from Earth
- Use the Primary 25m mirror as a supplemental communications antenna?

Issues

- Frequency Spectrum management policy predictions for missions in 2020-2030 timeframe
- Burden of costs to implement relay spacecraft assets
- Interference of signals (RF or Optical) on Earth as L2 spacecraft transmits to GEO relays
- "SlowBoat" progress of NASA towards implementing changes to how things are done today
- Inflatable antenna technology maturation and implementation in Space communications
- Lower mass, higher power handling communications components
- Gimbaled antenna usage on Science spacecraft

Technology Roadmaps

Main advancements in technologies required for Communications

- Antennas
 - Inflatable X-band/Ka-band
 - Microstrip patch (S-band)
- Transponders
 - Micro-miniature electronics
- Transceivers
 - Comms on a chip
 - Low threshold reception
- Power Amplifiers
 - 50-70 % efficiency
- Packaging
 - Reduced mass & volume
 - Power dissipation capability

- Modulation/Coding
 - Advanced Eb/No thresholds
 - Very Low BER coding

Communications Roadmap

Communications Roadmap

Backup

Fixed Comm Parameters						
E-S L2 Spacecraft Transmission Parameters						
Antenna Diameter	1m					
Antenna Type	Dish					
Line Losses	1dB					
Modulation Index	1.1rad					
Transmit Gain (X/Ka-Band)	36.4/48dBi					
E-S L2 Spacecraft Receive	r Parameters					
Sensitivity	-100dBm					
Antenna Diameter	1m					
Antenna Type	Dish					
Receiver Gain (Ka-Band)	47.5dBi					
Ant. System Noise Temp	350°K					
Antenna Pointing Error	1dB					
Modulation Index	1.1rad					
Earth's Ground Station Svalbard Parameters						
TX/RX Antenna Diameter	11.3m					
Receiver Gain (X/Ka-Band)	57.4/69dBi					
Transmit Gain (Ka-Band)	69.6dBi					
RX System Noise Temp	160°K					
TX/RX Line Losses	1dB					
WP Receive Reqd Eb/No	.81dB					
WP Transmit Reqd Eb/No	2.2dB					

Earth's Ground Station Svalbard Slant Range VS Link Margin Band Frequency = 8.45GHz and Power = 100Watts

to Earth's Ground Station Svalbard Slant Range VS Link Margin Ka-Band Frequency = 32GHz and Power = 100Watts

Fixed Comm Parameters						
E-S L2 Spacecraft Transmission Parameters						
Antenna Diameter	1m					
Antenna Type	Dish					
Line Losses	1dB					
Modulation Index	1.1rad					
Transmit Gain (X/Ka-Band)	36.4/48dBi					
E-S L2 Spacecraft Receiver Parameters						
Sensitivity	-100dBm					
Antenna Diameter	1m					
Antenna Type	Dish					
Receiver Gain (Ka-Band)	47.5dBi					
Ant. System Noise Temp	350°K					
Antenna Pointing Error	1dB					
Modulation Index	1.1rad					
Earth's Ground Station McMurdo Parameters						
TX/RX Antenna Diameter	10m					
Receiver Gain (X/Ka-Band)	56.3/67.9dBi					
Transmit Gain (Ka-Band)	68.5dBi					
RX System Noise Temp	160°K					
TX/RX Line Losses	1dB					
WP Receive Reqd Eb/No	.81dB					
WP Transmit Reqd Eb/No	2.2dB					
=						

Earth's Ground Station McMurdo Slant Range VS Link Margin Band Frequency = 8.45GHz and Power = 100Watts

Earth's Ground Station McMurdo Slant Range VS Link Margin Ka-Band Frequency = 32GHz and Power = 100Watts

